skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malmborg, Charlotte_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Models have become a key component of scientific hypothesis testing and climate and sustainability planning, as enabled by increased data availability and computing power. As a result, understanding how the perceived ‘complexity’ of a model corresponds to its accuracy and predictive power has become a prevalent research topic. However, a wide variety of definitions of model complexity have been proposed and used, leading to an imprecise understanding of what model complexity is and its consequences across research studies, study systems, and disciplines. Here, we propose a more explicit definition of model complexity, incorporating four facets—model class, model inputs, model parameters, and computational complexity—which are modulated by the complexity of the real‐world process being modelled. We illustrate these facets with several examples drawn from ecological literature. Overall, we argue that precise terminology and metrics of model complexity (e.g., number of parameters, number of inputs) may be necessary to characterize the emergent outcomes of complexity, including model comparison, model performance, model transferability and decision support. 
    more » « less